Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle.
نویسندگان
چکیده
Previous studies have indicated that frequency of stimulation is a major determinant of glucose transport in contracting muscle. We have now studied whether this is so also when total force development or metabolic rate is kept constant. Incubated soleus muscles were electrically stimulated to perform repeated tetanic contractions at four different frequencies (0.25, 0.5, 1, and 2 Hz) for 10 min. Resting length was adjusted to achieve identical total force development or metabolic rate (glycogen depletion and lactate accumulation). Overall, at constant total force development, glucose transport (2-deoxyglucose uptake) increased with stimulation frequency (P < 0.05; basal: 25 +/- 2, 0.25 Hz: 50 +/- 4, 0.5 Hz: 50 +/- 3, 1 Hz: 81 +/- 5, 2 Hz: 79 +/- 3 nmol. g(-1). 5 min(-1)). However, glucose transport was identical (P > 0.05) at the two lower (0.25 and 0.5 Hz) as well as at the two higher (1 and 2 Hz) frequencies. Glycogen decreased (P < 0.05; basal: 19 +/- 1, 0.25 Hz: 13 +/- 1, 0.5 Hz: 12 +/- 2, 1 Hz: 7 +/- 1, 2 Hz: 7 +/- 1 mmol/kg) and 5'-AMP-activated protein kinase (AMPK) activity increased (P < 0. 05; basal: 1.7 +/- 0.4, 0.25 Hz: 32.4 +/- 7.0, 0.5 Hz: 36.5 +/- 2.1, 1 Hz: 63.4 +/- 8.0, 2 Hz: 67.0 +/- 13.4 pmol. mg(-1). min(-1)) when glucose transport increased. Experiments with constant metabolic rate were carried out in soleus, flexor digitorum brevis, and epitrochlearis muscles. In all muscles, glucose transport was identical at 0.5 and 2 Hz (P > 0.05); also, AMPK activity did not increase with stimulation frequency. In conclusion, muscle glucose transport increases with stimulation frequency but only in the face of energy depletion and increase in AMPK activity. This indicates that contraction-induced glucose transport is elicited by metabolic demands rather than by events occurring early during the excitation-contraction coupling.
منابع مشابه
Effect of tension on contraction-induced glucose transport in rat skeletal muscle.
We questioned the general view that contraction-induced muscle glucose transport only depends on stimulation frequency and not on workload. Incubated soleus muscles were electrically stimulated at a given pattern for 5 min. Resting length was adjusted to achieve either no force (0% P), maximum force (100% P), or 50% of maximum force (50% P). Glucose transport (2-deoxy-d-glucose uptake) increase...
متن کاملAENDO August 40/2
Ihlemann, Jacob, Thorkil Ploug, Ylva Hellsten, and Henrik Galbo. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E208–E214, 1999.—We questioned the general view that contraction-induced muscle glucose transport only depends on stimulation frequency and not on workload. Incubated soleus muscles were electrically stim...
متن کاملContractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats.
Both insulin and contraction stimulate glucose transport in skeletal muscle. Insulin-stimulated glucose transport is decreased in obese humans and rats. The aims of this study were (1) to determine if contraction-stimulated glucose transport was also compromised in skeletal muscle of genetically obese insulin-resistant Zucker rats, and (2) to determine whether the additive effects of insulin an...
متن کاملThe alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro.
AMP-activated protein kinase (AMPK) is a key signaling protein in the regulation of skeletal muscle glucose uptake, but its role in mediating contraction-induced glucose transport is still debated. The effect of contraction on glucose transport is impaired in EDL muscle of transgenic mice expressing a kinase-dead, dominant negative form of the AMPKalpha(2) subunit (KD-AMPKalpha(2) mice). Howeve...
متن کاملDecreased contraction-stimulated glucose transport in isolated epitrochlearis muscles of pregnant rats.
Late pregnancy is characterized by insulin resistance for glucose transport in skeletal muscle. The main purpose of this study was to investigate the effect of late pregnancy on contraction-stimulated glucose transport in isolated rat skeletal muscle after in vitro electrical stimulation. Isolated epitrochlearis muscles of 19-day pregnant and aged-matched nonpregnant control rats were studied. ...
متن کاملLow-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
Skeletal muscle expresses two catalytic subunits, alpha1 and alpha2, of the 5'-AMP-activated protein kinase (AMPK), which has been implicated in contraction-stimulated glucose transport and fatty acid oxidation. Muscle contraction activates the alpha2-containing AMPK complex (AMPKalpha2), but this activation may occur with or without activation of the alpha1-containing AMPK complex (AMPKalpha1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 279 4 شماره
صفحات -
تاریخ انتشار 2000